Radiation Polymerization

Construction Material Composites

Composites

 Composites are materials in which a new physicochemical structure matrix is formed, as a result of processing its two or more components

Examples of Composites

Components	Composites
Organic-Organic	Wood-plastic composites; artificial leather; synthetic rubber (ABS, BS, nitrile-butyl-rubber) plastic laminates; automobile tires
Inorganic-Organic	Magnetic tape; safety glass; glass fibre or carbon fibre reinforced plastics; dental plastic cement; clay plastic com- posite; concrete plastic composite; rubber with inorganic fillers

Construction Materials

 Wood/polymer and concrete/polymer composites
Impregnate porous material with monomers or oligomers

Irradiate to polymerize the monomer/oligomer

Wood/polymer composites

•Dry to appropriate moisture level

•Evacuate (1-10 kPa)

 Impregnate with monomer or oligomer with appropriate viscosity

Irradiate to required polymerization level

(dose ≤30 kGy)

The process enhances hardness, decay resistance and water repellency

Czvikovszky (1992); Woods and Pikaev (1994)

Resins and Additives Used

- Monomers, such as methyl methacrylate, styrene, vinyl acetate, acrylonitrile
- Adhesion and grafting promoters, such as maleic anhydride, alkoxysilanes, and silicone acrylates
- Properties of final product vary with the wood used, and the polymeric materials used

Concrete-Plastic Composites

- Several monomers and mixtures can be used
- Compressive and tensile strengths, and modulus of rupture increase three-fold
- Much better under freezing and thawing
- Water permeability negligible
- Water absorption down to ~ 5%
- Cost ~ twice

Bradley (1984)

Wood-Plastic Composites (Wood, Bamboo)

- Improved
 - Moisture resistance
 - Insect damage resistance
 - Weathering characteristics
 - Dimensional stability
 - Hardness
 - Abrasion resistance
 - Tensile strength
 - Bending strength
- Radiation processing typically at ambient temperature (dose < 20 kGy) (thermal processing at elevated temperature)
- Bradley (1984)

Properties of Radiation Processed Wood Plastic Composites

Property	Sangre de Drago			Beechwood		
	None	MMA	ST-AN-UP	None	MMA	ST-AN-UP
Density,kg/m ³	710	1120	1060	723	865	1058
Plastic Content (%)	0	36.0	36.3	0	16.6	32.8
Compression Strength (MPa	53.2 a)	58.0	67.5	78.5	96.5	85.5
Impact Strength						
(kJ/m²)	101.1	44.7	69.8	86.6	65.3	83.7

MMA-Methyl methacrylate ST-AN-UP- Styrene/acrylonitrile/unsaturated polyester, 54/32/14

Property	PP	WF/PP	WF/RA/PP	WFRP
Tensile				<u></u>
strength (MPa)	37.1	23.9	24.6	28.8
Tensile				
modulus (GPa)	2.2	4.8	4.4	4.6
Flexural				
strength (MPa)	61.4	40.1	39.4	51.8
Flexural				
modulus (GPa)	1.9	2.8	3.1	3.9
Impact				
strength notched				
at 20°C (kJ/m²)	5.5	3.2	2.5	3.0
Melt flow index				
at 230°C/2.15 kg,				
g/10 min	5.0	0.4	5.5	6.0

Wood Fibre Filled, and Reinforced, Polypropylene

PP-polypropylene; WF - wood fibre; RA - reactive additive; WFRP - wood fibre-reinforced polypropylene (Czvikovszky, 1992)

Conclusions

- Some use of radiation processing is being made, e.g., parquet flooring
- There is potential for greater use of radiation processing in this field